
DEPrH-FIRST SEARCH .ANI) LmEAR GRAm ALGORITHMS

(Working Paper)

Robert Tarjan
Computer Science Department

Stanford University
Stanford, California

Sl.UlIDlary

The value of depth-first search or "backtracking"
as a technique for solving graph problems is illustra
ted by two examples. An algorithm for finding the
biconnected components of an undirected graph and an
improved version of an algorithm for finding the
strongly connected components of a directed graph are
presented. The space and time requirements of both
algorithIns are bounded by kl V+ k2E+ k

3
for some

constants kl , k2 ' and k
3

, where V is the ntunber

of vertices and E is the number of edges of the
graph being examined.

Introduction

Consider a graph G, consisting of a set of
vertices V and a set of edges e. The graph may
either be directed (the edges are ordered pairs (v,w)
of vertices; v is the tail and w is the head of
the edge) or undirected (the edges are unordered pairs
of vertices, also represented as (v,w)). Graphs
form a suitable abstraction for problems in many areas;
chemistry, electrical engineering, and sociology, for
example. They are also very general structures for
storing and retrieving information. Many questions may
be asked about graphs; we need the fastest, most eco
nomical algorithms to give answers to these questions.

In studying graph algorithms we cannot avoid at
least a few definitions. These definitions are more
or-less standard in the literature. (See Hararyl, for
instance.) We shall asstune a random-access computer
model. If f,fl , ••• ,fn are functions of xl, ••• ,xn '

we say f is O(fl, •.• ,fn) if If(xl.··xn) \ s
kO+ kllfl(xl ·• .xn) 1+ ... +knlfn(Xl ·· .xn) I for all Xi
and some constants kO.••kn . If Rand S are

binary relations, R* is the transitive closure of R,

R- I is the inverse of R, and
RS = [(u,w) \3:v«u,v) ER& (v,w) ES)}. If G = (v,e)

is a graph, a path p: v; w in G is a sequence of
vertices and edges leading from v to w A path is
simple if all its vertices are distinct. A path

p: v ~ v is called a closed path. A closed path

p: v ~ v is a cycle if all its edges are distinct and
the only vertex to occur twice in p is v, which
occurs exactly twice. The undirected version of a
directed graph is the graph formed by converting each
edge of the directed graph into an undirected edge and
removing duplicate edges. An undirected graph is
connected if there is a path between every pair of
vertices.

A (directed rooted) tree T is a directed graph
whose undirected version is connected, having one
vertex which is the head of no edges (called the root),
and such that all vertices except the root are the
head of exactly one edge. The relation" (v,w) is an
edge of T" is denoted by v -t w. The relation
"There is a path from v to w in T" is denoted by

v -: w. If v -t W, v is the father of wand w

*is a son of v. If v -t W, v is an ancestor of

114

wand w is a descendant of v. If v is a vertex
in a tree T, Tv is the subtree of T having as

vertices all the descendants of v in T. If G is
a directed graph, a tree T is a spanning tree of G
if T is a subgraph of G and T contains all the
vertices of G.

Depth-First Search

A technique which has been widely used for finding
solutions to problems in combinatorial theory and

artifici~l intelligence
6,8 but whose properties have

not been widely analyzed is of great value in solving
graph problems. This is backtracking, or depth-first
search. Suppose G is a graph which we wish to
explore. Initially all the vertices of G are unex
plored. We start from some vertex of G and choose
an edge to follow. Traversing the edge leads to a new
vertex. We continue in this way; at each step we
select an unexplored edge leading from a vertex already
reached and we traverse this edge. The edge leads to
some vertex, either new or already reached. Whenever
we run out of edges leading from old vertices, we
choose some unreached vertex, if any eXists, and begin
a new exploration from this point. Eventually we will
traverse all the edges of G, each exactly once.
Such a process is called a search of G .

There are many ways of searching a graph, depend
ing upon the way in which edges to search are selected.
Consider the following choice rule: when selecting an
edge to traverse, always choose an edge emanating from
the vertex most recently reached which still has unex
plored edges. A search which uses this rule is called
a depth-first search. The set of old vertices with
possibly unexplored edges may be stored on a stack.
Thus a depth-first search is very easy to program
either iteratively or recursively, provided we have a
suitable computer representation of a graph.

Definition 1: Let G = (V, e) be a graph. For each
vertex VEV we may construct a list containing all
vertices w such that (v, w) Ee. Such a list is
called an adjacency list for vertex v. A set of
such lists, one for each vertex in G, is called an
adjacency structure for G.

If the graph G is undirected, each edge (v,w)
is represented twice in an adjacency structure; once
for v and once for w. If G is directed, each
edge (v,w) is represented exactly once: vertex w
appears in the adjacency list of vertex v. A single
graph may have many adjacency structures; in fact,
each ordering of the edges around the vertices of G
gives a unique adjacency structure, and each adjacency
structure corresponds to a unique ordering of the
edges at each vertex. Using an adjacency structure
for a graph, we can perform depth-first searches in a
very efficient manner, as we shall see.

Suppose G is a connected undirected graph. A
search of G imposes a direction on each edge of G
given by the direction in which the edge is traversed
when the search is performed. Thus G is converted
into a directed graph G'. The set of edges which
lead to a new vertex when traversed during the search

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 18, 2009 at 08:40 from IEEE Xplore. Restrictions apply.

defines a spanning tree of G'. In general, the arc~

of G' which are not part of the spanning tree inter
connect the paths in the tree. However, if the search
is depth-first, each edge (v,w) not in the spanning
tree connects vertex v with one of its ancestors w.

Definition 2: Let P be a directed graph, consisting
of two disjoint sets of edges, denoted by v ~ wand
v -~ w respectively. Suppose P satisfies the
following properties:
(i) The subgraph containing the edges v -+ w is a

spanning tree of P •
* -1(ii) We have _~C (~) , where rr ~tf and tf _~tf

denote the relations defined by the corresponding
sets of edges.

Then P is called a palm tree. The edges v - ware
called the fronds of P .

Theorem 1: Let P be the directed graph generated by
a depth-first search of a connected graph G. Then
P is a palm tree. Conversely, let P be any palm
tree. Then P is generated by some depth-first
search of the undirected version of P. . \

Proof: Consider the program listed below, which
carrles out a depth-first search of a connected gre~h,

starting at vertex s, using an adjacency structure
of the graph to be searched. The program numbers the
vertices of the graph in the order they are reached
during the search and constructs the directed grapb
(p) generated by the search.

begin
integer i;
procedure DFS(v,u);

begin
~ER(v) := i := i+l;

for w in the adjacency list of v do
-begin

if w is not yet numbered then
- begin

---COnstruct arc v w in P;
DFS(w,v);

end
elseIf NUMBER(w) < NUMBER(v)
--andw --, = u then

construct arc v - w in P;

Each arc of the original graph is directed in at
least one direction; if (v,w) does not become an arc
of the spanning tree T, either v - w or w - v
must be constructed, since both v and ware
numbered whenever edge (v,w) is inspected and either
NUMBER(v) < NUMBER(w) or NUMBER (v) > NUMBER(w) •

The arcs v w run from smaller numbered points
to larger numbered poilJ,ts. The arcs v - w run from
larger numbered points to smaller numbered points. If
arc v - w is constructed, arc w v is not con
structed later because both v and ware numbered.
If arc w v is constructed, arc v - W is not
later constructed, because of the test " w --, = u" in
procedure DFS. Thus each edge in the original graph
is directed in one and only one direction.

Let Tu be the graph defined by the arcs v w

constructed during execution of DFS(u,) . The
argwnent above which shows that T is a spanning tree
also shows that Tu is a tree rooted at u. Consider

an arc v - w. We have NUMBER(W) < NUMBER(v) •
Thus w is numbered before edge (w,v) is inspected,
and v is a vertex in T This means that

* w
w v , and P is a palm tree.

Let us prove the converse part of the theorem.
Suppose that P is a palm tree, ·with spanning tree T
and undirected version G. Construct an adjacency
structure of G in which all the edges of T appear
before the other edges of G in the adjacency lists.
Starting with the root of T, perform a depth-first
search using this adjacency structure. The search will
traverse the edges of T preferentially and will
generate the palm tree P; it is easy to see that
each edge is directed correctly. This completes the
proof of the theorem.

We may state Theorem 1 non-constructively as:

Corollary 2: Let G be any 1llldirected graph. Then
G can be converted into a pah tree by directing its
edges in a suitable manner.

Biconnectivity

The value of depth-first search follows from the
simple structure of a palm tree. Let us consider a
problem in which this structure is useful.

Definition 3: Let G = (v,e) be an undirected graph.
Suppose that for each triple of distinct vertices

*v,w,a in v, there is a path p: v ~ w such that a
is not on the path P. Then G is biconnected. If,
on the other hand, there is a triple of distinct ver
tices v, w, a in v such that a is on any path

*p: v ~ w , and there exists at least one such path,
then a is called an articulation point of P.

G
i

is a proper subgraph of a biconnected

subgraph of G .
Each articulation point of G occurs more than
once among the Vi' I < i < n. Each non-

articulation point of G occurs exactly once
among the Vi' 1 < i < n .

(iii)

Lemma 3: Let G = (v,e) be an undirected graph. We
may define an equivalence relation on the set of edges
as follows: two edges are equivalent if and only if
they belong to a common cycle. Let the distinct
equivalence classes under this relation be e

i
,

1 SiS n , and let G. = (v.,e.) ,where V. is the
111 1

set of vertices incident to the edges of ei ;
Vi = [vl~w«v,w)Eei)} · Then
(i) G. is biconnected, for each 1 < i < n •

1

(ii) No

end;
i := 0;
DFS(s,O);

end;

Suppose P = (v,e) is the directed graph gener
ated by a depth-first search of some connected graph G,
and assume that the search begins at vertex s •
Examine the procedure DFS. The algorithm clearly
tenninates because each vertex can only be numbered
once. Furthermore, each edge in the graph is examined
exactly twice. Therefore the time required by the
search is linear in V and E.

For any vertices v and w, let d(v,w) be the
length of the shortest path between v and w in G.
Since G is connected, all distances are finite.
Suppose that some vertex remains unnumbered by the
search. Let v be an unnumbered vertex such that
d(s,v) is minimal. Then there is a vertex w such
that w is adjacent to v and d(s,w) < d(s,v) •
Thus w is numbered. But v will also be numbered,
since it is adjacent to w This means that all
vertices are numbered during the search.

The vertex s is the head of no edge w s •
Each other vertex v is the head of exactly one edge
w v. The subgraph T of P defined by the edges
v w is obviously connected. Thus T is a spanning
tree of P.

115

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 18, 2009 at 08:40 from IEEE Xplore. Restrictions apply.

(i v) The set Vi n Vj contains at most one point,

for any I < i, j < n. Such a point of inter
section is an articulation point of the graph.

The subgraphs G. of G are called the biconnected
components of GJ..

Proof: An exercise for the reader.

Suppose we wish to determine the biconnected
components of an illldirected graph G. Common algo
ritlnns for this purpose, for instance Shirey' slO, test
each vertex in turn to discover if it is an articula
tion point. Such algorithms require time proportional
to V·E ,where V is the number of vertices and E
is the number of edges of the graph. A more efficient
algorithm uses depth-first search. Let P be a paJm
tree generated by a depth-first search. Suppose the
vertices of P are numbered in the order they are
reached during the search (as is done ,by the procedure
DFS above). We shall refer to vertices by their
numbers. If u is an ancestor of v in the spanning
tree T of P, then u < v. For any vertex v in
P , let LOWPI'(v) be the smallest vertex in the set

*[v} U [wlv --+ w}. The following results form the
basis of an efficient algorithm for finding biconnected
components.

Lennna 4: Let G be an illldirected graph and let P be
a paJm tree formed by directing the edges of G. Let

*T be the spanning tree of P. Suppose p: v ~ w is
any path in G. Then P, contains a point which is
an ancestor of both v and w in T •

Proof: Let T with root u be the smallest subtree
u

of T containing all vertices on the path p. If
u = v or u = w the lemma is immediate. otherwise,
let T be the subtree containing v, and let T

u l u2
be the subtree containing w, such that u -+ u

l
and

u -+ u2 . Since Tu is minimal, ul -, = u2 • Then

path p can only get from T to T by passingu
l

u2
through vertex u, since no point in one of these
trees is an ancestor of any point in the other, while
both and --+ connect only ancestors in a palm
tree. Since u is an ancestor of both v and w,
the lermna holds.

Lemma 5: Let G be a connected undirected graph.
Let P be a paJm tree formed by directing the edges
of G, and let T be the spanning tree of P.
Suppose a,v,w are distinct vertices of G such
that (a, v) ET , and suppose w is not a descendant of

*v in T. (That is, ..., (v w) in T .) If
LOWPr(v) > a then a is an articulation point of P
and removal of a disconnects v and w •

Proof: If a v and LOWPr(v) > a , then any path
from v not passing through a -remains in the sub
tree Tv' and this subtree does not contain the

point w. This gives the lemma. Figure I shows a
graph, its LOWPr values, articulation points, and
biconnected components.

The LOWFT values of all the vertices of a palm
tree P may be calculated during a single depth-first
search, since LOWFT(v) = min([NUMBER(v)} U
[LOWPr(w) Iv -+ w} U [NUMBER(w) \v --+ w}) • On the basis
of such a calculation, the articulation points and the
biconnected components may be determined, all during
one search. The bicormectivity algorithm is presented
below. The program will compute the bicormected

components of a graph G, starting fran vertex s •

begin
-rnteger i;

procedure BICONNECT(v,u);
begin

NUMBER(v) := i := i+l;
LOWPr(v) = NUM:BER(v) ;
for w in the adjacency list of v do

begin
if w is not yet numbered then

begin
add (v,w) to stack of edges;
BICO~T(w,v);
LOWPI'(v) := min(LOWPT(v),LOWPT(w));
if LOWPI'(w) ? NUMBER(v) then

begin
start new biconnected component;
for, (ul ' u2) on edge stack with

:NUMBER (u
l

) > NUMBER(v) do

delete (u
l
,u

2
) from edge stack

and add it to current component;
delete (v,w) from edge stack and add

it to current component;
end;

end
else-if NUMBER(w) < NUMBER(v) and WI = u then

begin --
add (v, w) to edge stack;
LOWPr(v) :=min(LOWPr(v) ,NUMBER(w)) ;

end;
end;--

end;
i := 0;
for w a vertex do if w is not yet numbered then
BICONNECT(w,O)'; -

end;

The edges of G are placed on a stack as they
are traversed; when an articulation point is found the
corresponding edges are all on top of the stack. (If
(v,w) ET and LOWPrl(w) > LOWPrI(v) , then the corres
ponding biconnected component contains the edges in
[(ul ,u2)lw ~ ul } U [(v,w)} which ,are on the edge

stack.) A single search on each connected component
of a graph G will give us all the biconnected com
ponents of G •

Theorem 6: The biconnectivity algorithm requires°(V, E) space when applied to a graph with V vertices
and E edges.

Proof: The algorithm clearly requires space bounded
by kl V+k2E + k3 ' for some constants kl , k2 ' and

k3 . The algorithm is an elaboration of the depth

first search procedure DFS. During the search,
LOWPI' values are calculated and each edge is placed
on the edge stack once and removed from the edge stack
once. The amount of extra time required by these
operations is proportional to E. Thus BICONNECT has
a time bound linear in V and E •

Theorem 7: The biconnectivity algorithm correctly
gives the biconnected components of any undirected
graph G.

Proof: The actual depth-first search undertaken by
the algorithm depends on the adjacency structure chosen
to represent G; we shall prove that the algorithm is
correct for all adjacency structures. Notice first
that the biconnectivity algorithm analyzes each con
nected component of G separately to find its bicon
nected components, applying one depth-first search to

116

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 18, 2009 at 08:40 from IEEE Xplore. Restrictions apply.

each connected component. Thus we need only prove
that the biconnectivity algorithm works correctly on
connected graphs G.

The correctness proof is by induction on the
number of edges in G. Suppose G is connected and
contains no edges. G either is empty or consists of
a single point. The algorithm will terminate after
examining G and listing no components. Thus the
algorithm operates correctly in this case.

Now suppose that the algorithm works correctly on
all connected graphs with E-l or fewer edges. Con
sider applying the algorithm to a connected graph G
with E edges. Each edge placed on the stack of
edges is eventually removed and added to a component
since everything on the edge stack is removed whenever
the search returns to the root of the palm tree of G.
Consider the situation when the first component G' is
formed. Suppose that this component does not include
all the edges of G. Then the vertex v currently
being examined is an articulation point of the graph
and separates the edges in the component from the
other edges in the graph by Lemma 5.

Consider only the set of edges in the component.
If BICONNECT(v,O) is executed, using the graph G' as
data, the steps taken by the algorithm are the same as
those taken during the analysis of the edges of G'
when the data consists of the entire graph G. Since
G' contains fewer edges than G, the algorithm oper
ates correctly on G' and Gt must be biconnected.
If we delete the edges of G' £'rom G, we get another
subgraph G" with fewer edges than G since G' is
not empty. The algorithm operates correctly on G"
by the induction assumption. The behavior of the
algorithm on G is s:iJnply a composite of its behavior
on G' and on G" ; thus the algorithm must operate
correctly on G.

Now suppose that only one component is found. We
want to show that in this case G is biconnected.
Suppose that G is not biconnected. Then G has an
articulation point a. Consider the connected com
ponents left when a is deleted from the graph. One
of them contains all the ancestors of a; one must
contain only descendants of a. The component which
contains only descendants of a also contains some
point v such that (a,v)ET, where T is the
spanning tree generated by the search. Since the
component containing v has only descendants of a
as vertices, it must be true that LOWPr(v)? a •
But this is a contradiction, because the articulation
point test would have succeeded when vertex a was
examined and more than one biconnected component would
be generated. This is contrary to the assumption that
only one component was found. Thus G must be bicon
nected, and the algorithm works correctly in this case.

By induction, the biconnectivity algorithm gives
the correct components when applied to any connected
graph, and hence when applied to any graph.

Strong Connectivity

The biconnectivity algorithm shows how useful
depth-first search can be when applied to undirected
graphs. However, when a directed graph is searched in
a depth-first manner, a s:iJnple palm tree structure
does not result, because the direction of search on
each edge is fixed. The more complicated structure
which results in this case is still simple enough to
prove useful in at least one application.

Definition 4: Let G be a directed graph. Suppose
that for each pair of vertices v,w in G, there

* *exist paths PI: v ~ w and P2: w ~ v. Then G is

said to be strongly connected.

117

Lemma 8: Let G = (v,e) be a directed graph. W~ may
defJ.ne an equivalence relati on on the set of vertlces
as follows: two vertices v and ware equivalent

* t .if there is a closed path p: v ~ v which con alns w.
Let the distinct equivalence classes under this
relation be 1(., 1 < i < n. Let G. = (v.,e.)

1 - - 111

where ei = [(v,w) E e\v,w E Vi} • Then:

(i) Each G. is strongly connected.
1

(ii) No G. is a proper subgraph of a strongly
1

connected subgraph of G.
The subgraphs G. are called the strongly connected

1components of G.

Proof: An exercise for the reader.

Suppose we wish to determine the strongly con
nected components of a directed graph. Purdom9 and

Munro7 present virtually identical algorithms for
solving this problem using depth-first search (although
they do not mention this fact explicitly). Purdom

o
cla:iJns a time bound of k-V:- for his algorithm; Munro
claims k max(E,V log V) , where the graph has Vver
tices and E edges. Their algorithm attempts to con
struct a cycle by starting from a point and beginning
a depth-first search. When a cycle is found, the
vertices on the cycle are marked as being in the same
strongly connected component and the process is re
peated. The algorithm has the disadvantage that two
small strongly connected components may be collapsed
into a bigger one; the resultant extra work in relabel-

ling may contribute -V2 steps using a simple approach,
or V log V steps if a more sophisticated approach is

used (see Munro7). A more careful study of what a
depth-first search does to a directed graph reveals
that the extensive relabelling of the Purdom-Munro
algorithm may be avoided and an O(V,E) algorithm may
be devised.

Consider what happens when a depth-first search
is performed on a directed graph G. The set of edges
which lead to a new vertex when traversed during the
search form a tree. The other edges fall into three
classes. Some are edges running from ancestors to
descendants in the tree. These edges may be ignored,
because they do not affect the strongly connected
components of G. Some edges run from descendants to
ancestors in the tree; these we may call fronds as
above. other edges run from one subtree to another in
the tree. These, we call vines. If the vertices of
the tree are numbered in the order they are reached
during the search, a vine (v,w) always has
NUMBER (v) > NUMBER(w) , as the reader may easily show.
We shall denote tree edges by v - w and fronds by
v --was before; we use v --- w to denote vines.

Suppose G is a directed graph, to which a
depth-first search algorithm is applied repeatedly
until all the edges are explored. The process will
create a set of trees which contain all the vertices
of G, called the spanning forest F of G, and
sets of fronds and vines. (other edg~s are thrown
away.) Suppose the vertices are numbered in the order
they are reached during the search and that we refer
to vertices by their number. Then we have the
following results:

Lemma 9: Let v and w be vertices in G which lie
in the same strongly connected component. Let u be
the highest numbered common ancestor of v and w
in F, a spanning forest of G generated by repeated
depth-first search. Then u lies in the same strongly
connected component as v and w •

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 18, 2009 at 08:40 from IEEE Xplore. Restrictions apply.

Proof: Without loss of generality we may assume
v < w. We prove the lemma by. induct ion"cnv •
Suppose v = 1. Then w is a descendant of v in
F. This is true since the search explores all paths
emanating from v. Thus ·u = v and the lemma is
true, trivially.

Suppose the lemma is true for all v < k. Let
*v = k. Consider any path p: v ~ w. If p con~

tains no vertices x < v , then w must be a descen
dant of v, because p can neve~ leave the subtree
Tv ' and the result holds. otherwise, let x be the

first point on path p such that x < v. Vertex x
lies "in the same strongly connected cc:mponent as w,
and by the induction hypothesis the highest common
ancestor u ' of x and w also lies in this compo
nent. The descendants of u I fonn an interval
(u',u'+i) which contains x and w and hence con
tains v. Thus u' is a cormnon ancestor of v and
w. Vertex u is a descendant of u' , since u is
the highest numbered camnon ancestor of v and w •
Thus u must be in the same strongly connected compo
nent as v and w since there is a path

* * * *p':u' u v~w~u'
The lemma thus follows by induction. The proof

implies that v and w actually have a common
ancestor in F, which is implicit in the statement of
the lemma.

Corollary 10: Let C be a strongly connected canpo
nent in G. Then tbe vertices of C define a subtree
of a tree in F, the spanning forest of G. The root
of this subtree is called the root of the strongly
connected component C • --

The problem of finding the strongly connected
components of a graph G thus reduces to the problem
of finding the roots of the strongly connected compo
nents, just as the problem of finding the biconnected
canponents of an undirected graph reduces to the prob
lem of finding the articulation points of the graph.
We can construct a simple test to determine if a ver
tex is the root of a strongly connected component. If
v is a vertex, let LOWFT(v) be defined exactly as

*before: LOWFT(v) = min({w} U {wlv - w}) . Let

* * *LOWVINE(v) = min({v} v tWlV --.... w & ~u(u v&u w
& u and ware in the same strongly connected component
of G)}) .

Lemma 11: Let G be a directed graph with LOWPI' and
LOWVINE defined as above relative to some spanning
forest F of G generated by depth-first search.
Then v is the root of some strongly connected compo
nent of G if and only if LOWPr(v) = v and
LOWVINE(v) = v •

Proof: Obviously, if v is the root of a strongly
connected component C of G, then LOWPr(v) = v
and LOWVINE(v) = v, since if LOWPr(v) < v or
LOWVINE(v) < v , some proper ancestor of v would be
in C and v could not be the root of C •

Consider the converse. Suppose u is the root of
a strongly connected component C of G, and v is
a vertex in C different from u. There must be a

*path p: v => u. Consider the first edge on this path
which leads to a vertex w not in the subtree T

v
If this edge is a frond we must have LOWPI'(v) < w < v .
If this edge is a vine, we must have LOWVINE(v) < w
< v , since the highest numbered common ancestor of v
and w is in C . Figure 2 shows a directed graph,
its LOWPI' and LOWVINE values, and its strongly connected
components.

LOWPI' and LOWVINE may be calculated using depth
first search. An algorithm for computing the strongly

connected components of a directed graph in O(V,E)
time may be based on such a calculation. .An implemen-
tationof such an algorithm is presented below.. The
points which have been reached during the search but
which have not yet been placed in a component are
stored on a stack. This stack is analogous to the
stack of edges used by the biconnectivity algoritJ:un.

begin
integer i;
procedure STRONGCONNEJT(v);

begin
:oowP.r (v) : = LCMVINE(v) : = NUMBER (v) •- i •- i +1;
put v on stack of points;
forw in the adjacency list of v do

begin -
if w is not yet numbered then
-begin canment (v,w) is a tree arc;

STRONGCONNEX:T (w) ;
LOWPl'(v) :=min(LOWPr(v), LOWPI'(w)) ;
IOt1VINE(v) :=min {LOWvmE(v) , LOWVINE (w)) ;

end
else-if w is an ancestor of v do

begin comment (v,w) is a frond;
WWP1'{v) :=min(LOWPr(v) ,NUMBER(w») ;

end
else if NUMBER(w) < NUMBER(v) do

begin canment (v,w) is a vine;
if w is on stack of points then

LCMVINE{v) :=min(LOWVINE(v) ,NUMBER(w» ;
end;

end;--
i~\LCMPl'(v) = NUMBER(v)) and
TLOWVINE(v) = NUMBER{v) then

begin camnent v is the root of a component;
start new strongly cormected component;
while w on top of point stack satisfies

NUMBER(w) > NUMBER(v) do
delet e w-from point stack and put w in

current component;
end;

end;--
i := 0;
for w I· a vertex if w is not yet numbered then
STRONGCONNECT'{W) ;

end;

Theorem 12: The algorithm for finding strongly
connected components requires O{V, E) space and time.

Proof: An exercise for the reader.

Theorem 13: The algorithIn for finding strongly
connected components works correctly on any directed
graph G.

Proof: The calculation of LOWPI'(v) performed by the
algorithm is correct, since it is exactly the same
as that performed by the bicormectivity algorithm. We
prove by induction that the calculation of LOWVINE(v)
is correct. Suppose as the induction hypothesis that
for all vertices v such that v is a proper descen
dant of vertex k or v < k, LOWVINE(v) iscomputed
correctly. This means that the test to determine if v
is the root of a component is performed correctly for
all such vertices v. The reader may verify that this
somewhat strange induction hypothesis corresponds to
considering vertices in the order they are examined for
the last time during the depth-first search process.

*Consider vertex v = k. Let v WI and let

wl ---+ w2 be a vine such that w2 < v. The highest

cammon ancestor u of v and w2 is also the highest

common ancestor of WI and w2 . If u is not in the

118

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 18, 2009 at 08:40 from IEEE Xplore. Restrictions apply.

same strongly connected component as w2 ' then there

must be a strongly connected component root on the tree

*path u -+ w2 • Since w2 < v , this root was dis-

covered and w2 was removed from the stack of points

and placed in a component before the edge wI ---+ w
2

is traversed during the search. Thus WI ---+ w
2

will

not enter into the calculation of LOWVINE(v) . On
the other hand, if u is in the same strongly con
nected component as w2 ' there is no component root

*r ---, = u on the branch u -+ w2 ' and v ---+ w2 will be

used to calculate LOWVINE(W2) , and also LOWVINE(v) ,

as desired. Thus LOWVINE (v) is calculated correctly,
and by induction LOWVINE is calculated correctly for
all vertices.

Since the algorithm correctly calculates LOWPr
and LOWvnm, it correctly identifies the roots of the
strongly connected components. If such a root u is
found, the corresponding component contains all the
descendants of u which are on the stack of points
when u is discovered. These vertices are all on top
of the stack of points, and are all put into a compo
nent by STRONGCONNECT. Thus STRONGCO~T works
correctly.

Further Applications

We have seen how the depth-first search method
may be used in the construction of very efficient
graph algorithms. The two algorithms presented here
are in fact opt:iJnal to within a constant factor, since
every edge and vertex of a graph must be examined to
determine a solution to one of the problems. (Given
a suitable theoretical framework, this statement may
be proved rigorously.) The similarity between bicon
nectivity and strong connectivity revealed by the
depth-first search approach is striking. The possible
uses of depth-first search are very general, and are
certainly not l:iJnited to the examples presented. An
algorithm for finding triconnected components in
O(V, E) time may be constructed by extending the
biconnectivity algorithm. An algorithm for testing

the planarity of a graph in O(V) time 11 is also
based on depth-first search. Combining the connecti
vity algorithms, the planarity algorithm, and an
algorithm for testing isomorphism of triconnected

planar graphs,5 we may devise an algorithm to test
isomorphism of arbitrary planar graphs in O(V log V)
t:iJne. Depth-first search is a powerful technique with
many applications.

AcknOWledgments

This research was supported by the Hertz Founda
tion and the National Science Foundation.

119

References

[1] Harary, Frank. Graph Theory. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1969.

[2] Hopcroft, J. and Tarjan, R. "Efficient Algori
thms for Graph Manipulation." Stanford Computer
Science Department Technical Report No. 207,
March, 1971.

[3] Hopcroft, J. and Tarjan, R. "A V2 Algorithm
for Determining Isomorphism of Planar Graphs."
Information Processing Letters 1 (1971), 32-34.

[4] Hopcroft, J. and Tarjan, R. "Planarity Testing
in V log V Steps: Extended Abstract."
Stanford Computer Science Department Technical
Report No. 201, February, 1971.

[5] Hopcroft, J. "An NlogN Algorithm for Iso
morphism of Planar Triply Connected Graphs."
Stanford Computer Science Department Technical
Report No. 192, January, 1971.

[6] Golomb, S. W. and Baumert, L. D. "Backtrack
Programming." JACM 12, 4 (Oct. 1965), 516-524.

[7] Munro, Ian "Efficient Determination of the
Strongly Connected Components and Transitive
Closure of a Directed Graph." Department of
Computer Science, University of Toronto, 1971.

[8] Nilson, Nils J. Problem Solving Methods in
Artificial Intelligence. 1970, unpublished.

[9] Purdom, Paul W. "A Transitive Closure Algorithm."
Computer Science Technical Report No. 33,
University of Wisconsin Computer Sciences
Department, July, 1968.

[10] Shirey, R. W. "Implementation and Analysis of
Efficient Graph Planarity Testing Algorithms."
Ph.D. Thesis, University of Wisconsin Computer
Sciences Department, June, 1969.

[11] Tarjan, R. "An Efficient Planarity Algorithm."
To be published as a Stanford Computer Science
Department Technical Report.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 18, 2009 at 08:40 from IEEE Xplore. Restrictions apply.

f

4

5
4[2] 6[1]

(

6 \ 3[2]
\ 8[7], ,

'-+
*

8 2[1]

9----all

3 ..--.....--..

*1[1]

(a)

7

!
1

2

4t:>3 8(b)

2 5 7Z\
9

6

1

(c)

Figure 1: A graph and it s biconnected component s .

(a) Graph.

(b) A palm tree with LOWPr values in [], articulation

points marked with *.
(c) Biconnected components.

120

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 18, 2009 at 08:40 from IEEE Xplore. Restrictions apply.

8
*6 [6, 6]

4~-~f-----f---~----~3

5[3,5]

---",

/

/
~ 4[3,4]

" I
/

/
/

/
/

/
L:(

*1 [1,1]

8[1,8J

7

(a) (b)
6
•5

7
8

3

1

(c)

Figure 2: A graph and its strongly connected components.

(a) Graph.

(b) Corresponding graph generated by depth-first search with

LOWPI', LOWVINE values in [], roots of components marked

with *.
(c) Strongly connected components.

121

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 18, 2009 at 08:40 from IEEE Xplore. Restrictions apply.

